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Abstract Reinforcement learning is ubiquitous. Unlike

other forms of learning, it involves the processing of fast

yet content-poor feedback information to correct assump-

tions about the nature of a task or of a set of stimuli. This

feedback information is often delivered as generic rewards

or punishments, and has little to do with the stimulus

features to be learned. How can such low-content feedback

lead to such an efficient learning paradigm? Through a

review of existing neuro-computational models of rein-

forcement learning, we suggest that the efficiency of this

type of learning resides in the dynamic and synergistic

cooperation of brain systems that use different levels of

computations. The implementation of reward signals at the

synaptic, cellular, network and system levels give the

organism the necessary robustness, adaptability and pro-

cessing speed required for evolutionary and behavioral

success.
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Introduction

In computer sciences, reinforcement learning (RL) com-

bines theories from machine learning, artificial intelligence

and dynamic programming. It refers to the trial-and-error

learning of the set of actions an agent must take to maxi-

mize future rewards or minimize punishments (Sutton and

Barto 1998). RL is fundamental to the psychological and

neuroscientific studies of reinforcement and conditioning,

and to the neuroscience of decision-making in general

including neuroeconomics (Glimcher and Rustichini 2004;

Camerer 2008). Since the early 1980s, there has been a

growing interest in mapping computational theories of RL

to their underlying neural mechanisms. On the theoretical

side, it has become clear that RL results from the complex

interactions between different computational subsystems

describing processes internal to the organisms and

accounting for its interactions with the environment

(Fig. 1; Sutton and Barto 1998; Freeman 2007). On the

biological side, it has also become clear that there is no

single brain area responsible for the implementation of RL

and that learning and reward processing are highly dis-

tributed functions involving dozens of dynamically inter-

acting brain structures (Dayan and Balleine 2002). As this

review will show, RL is computationally implemented at

multiple levels, from chemical to systems.

In RL, an agent interacts with its environment in order to

learn the best actions it must perform to maximize the sum

of future rewards. RL models are typically composed of 4

main components (Fig. 1; Sutton and Barto 1998). (1) A

reward function, which attributes a desirability value to a

state. The reward is often a one-dimensional scalar r(t),

computed on the basis of information streams from the

environment. It is an instantaneous scalar that can carry

a positive or a negative value. (2) A value function (also
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known as critic) which determines the long term desir-

ability of a state, based on how much future rewards can be

expected for being in that state. The value function may or

may not be contingent upon actions taken by the agent. In

most models, the output of this function is computed as the

Temporal Difference (TD) error between estimated and

actual rewards. (3) A policy function (also known as actor)

which maps the agent states to possible actions, using the

output of the value function (the reinforcement signal) to

determine the best action to choose. (4) A model of the

environment which includes a representation of the envi-

ronment dynamics required for maximizing the sum of

future rewards. These general RL concepts are further

explained and elaborated by various authors (Dayan and

Daw 2008; Kaelbling et al. 1996; Montague et al. 2004a;

Sutton and Barto 1998; Worgotter and Porr 2005; Dayan

and Abbott 2001).

The general goal of RL models is to maximize the sum

of future rewards. However, if rewards are delivered after a

delay, or with low probabilities, it can be challenging to

determine which state or action to associate with the cur-

rent reward. This issue is known as the ‘temporal credit-

assignment problem’ (Barto et al. 1983; Sutton 1984). One

way of addressing this issue with computational models is

to incorporate an eligibility trace. An eligibility trace can

be defined as a slowly decaying temporal trace of an event,

used to determine which state or action is to be reinforced

when a reward arrives later in time under a given policy

(Sutton and Barto 1998). Eligibility traces have been

implemented computationally at various levels and a few

examples will be presented in this review.

The computer science notion of RL was originally

inspired from the psychological theories of reinforcement,

and the underlying process of associative learning (Cardi-

nal et al. 2002; Mackintosh 1983; Wise 2004; Wise and

Rompre 1989). At the neural level, reinforcement allows

for the strengthening of synaptic associations between

pathways carrying conditioned and unconditioned stimulus

information. At cognitive and system levels, reinforcement

processes may be the basis of the neural substrates of the

emotional state (Rolls 2000). The intrinsic nature of

rewards in psychology and computer science, however, is

different. In computational RL theories, rewards are sim-

ple, ‘information poor’ scalars influencing learning, while

in psychology, rewards are signals from the environment

that can arouse the organism (Berridge 2007).

Despite the differences between computational RL the-

ories and the psychological and physiological aspects of

conditioning, findings from these research fields are com-

plementary and converging toward a better understanding

of the brain mechanisms underlying reinforcement. RL

models have contributed to- and continue to unveil the

process underlying reinforcement from the neurochemical

to systems levels. We present an overview of the neuro-

biological underpinnings of reinforcement learning and

review the various ways in which the role of rewards has

been implemented computationally. We point to the fact

that reward signals act as reinforcers for multiple neural

mechanisms, being at neurochemical levels or at the sys-

tem levels. We review models of dopamine (DA) neuron

activity elicited by reward-predicting stimuli, models of

DA transmission, models of the effect of DA on synaptic

transmission and plasticity, and models of the effect of DA

on complex neural circuits mediating behavior.

Neurochemical level: models of dopamine neuron

activity

A large body of experimental work has shown that reward-

motivated behavior depends on the activity of DA neurons

from the midbrain ventral tegmental area (VTA) and sub-

stantia nigra pars compacta (SNc; Ljungberg et al. 1992;

O’Doherty et al. 2003; Seymour et al. 2004; Schultz 1998;

Wise and Rompre 1989). Dopamine has been shown to

play a role in motivation (Fibiger and Phillips 1986;

Robbins and Everitt 1996; Wise and Hoffman 1992; Wise

2004, 2005), in the acquisition of appetitive conditioning

tasks (Berridge and Robinson 1998; Everitt et al. 1999;

Ikemoto and Panksepp 1999), in many aspects of drug

addiction (Berke and Hyman 2000; Di Chiara 2002; Everitt

and Robbins 2005; Kelley and Berridge 2002; Koob

1992; Robinson and Berridge 2008; Wise 1996a, b) and is

involved in disorders such as Parkinson disease (Canavan

et al. 1989; Voon et al. 2010; Frank 2005; Knowlton et al.

1996; Moustafa et al. 2008).

Although computational theories of reinforcement

learning were in full force in the early 1980s, their popu-

larity significantly increased later, in the early 1990s, with

Reward function

Value function

Critic
Reinforcement

Signal (TD)rt

State Policy
Actor

Environment

Sensory informations
Motor actions

Fig. 1 Schematic representation of the reinforcement process. An

agent is involved in a constant and dynamical action-perception loop

(plain arrows) which involves the world, the agent’s state, and the

agent’s policies. Reinforcement learning makes use of a parallel

stream of information (dashed lines) providing additional input

dimensions to the State and Policy modules. These reinforcing signals

are typically low in information content
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the finding that DA cells were responsive to rewards and

reward predictive stimuli (Mirenowicz and Schultz 1994,

1996; Schultz 1992, 1998; Waelti et al. 2001). Compatible

with RL theories, these neurons transiently increased their

activity in response to the presentation of unexpected

rewards (i.e. time limited, in the order of 100 ms) and in

response to cues predicting upcoming reward delivery

(Hikosaka et al. 2008; Romo and Schultz 1990; Schultz

et al. 1997). As illustrated in Fig. 2, during classical con-

ditioning, unexpected reward initially triggered an increase

in phasic activity of DA neurons, which then shifted with

learning to the conditioned stimulus (Ljungberg et al. 1992;

Mirenowicz and Schultz 1994; Pan et al. 2005). When an

expected reward was omitted, the activity of DA neurons

paused at the precise time when the reward should have

been delivered (Ljungberg et al. 1992; Roesch et al. 2007;

Satoh et al. 2003). This activity pattern suggests that DA

neurons signal a ‘reward prediction error’. After learning

therefore, DA neurons do not respond to the reward itself,

but the difference between expected and received reward.

This notion of ‘prediction error’ is a central component of

current RL theories.

Temporal difference model

The activity pattern of DA neurons represents the reward

prediction error, which is central to the temporal difference

(TD) model developed by Sutton and Barto (Sutton 1988;

Sutton and Barto 1998). The TD model is based on a first-

order Markovian process, meaning that the transition from

one state to the next depends only on the current state and

action and not on those observed previously. Markov

decision processes (MDP) model the long-term optimality

of taking certain actions depending on the current states

(White 1993; Sutton and Barto 1998). Because knowledge

of the sum of future rewards is not available to the agent

when making a decision, Sutton and Barto adapted the TD

method to compute bootstrapped estimates of this sum,

which evolve as a function of the difference between

temporally successive predictions. Specifically, the TD

model calculates a prediction error d(t) based on the tem-

poral difference between the current discounted value

function cV(st?1) and that of the previous time step, V(st).

d tð Þ ¼ rtþ1 þ cV stþ1ð Þ � V stð Þ

In this equation, c is a discount factor which allows

rewards that arrive sooner to have a greater influence over

delayed ones, and rt?1 represent the current reward (Sutton

and Barto 1990, 1998). The prediction error is then used to

update the value function estimate, which is a value of the

long term desirability of a state (see Fig. 1)

V stð Þ ¼ V stð Þ þ a rtþ1 þ cV stþ1ð Þ � V stð Þ½ �

where a is a ‘step-size’ parameter representing the learning

rate. The TD model is used to guide learning so that future

expectations are more accurate.

Numerous research groups have correlated the activity

of DA neurons with the TD error originally proposed by

the algorithm (Bayer and Glimcher 2005; Morris et al.

2004; Montague et al. 1996; Nakahara et al. 2004; Roesch

et al. 2007; Schultz et al. 1997) and found that it indeed

followed the model at many levels. For instance, the

magnitude of the change in DA neuron activity was

recently shown to be modulated by the size of the reward

prediction error and by the length of the stimulus-reward

interval, such that the most valuable reward induced the

greatest increase in neural activity (Kobayashi and Schultz

2008; Roesch et al. 2007). This is in line with the TD

model, which incorporates a discount factor to take these

magnitude differences into account. Similarly, the duration

of the pause of DA neuronal firing was shown to be

modulated by the size of the negative reward prediction

error (Bayer et al. 2007). However, not all aspects of DA

cell activity are modeled by the traditional TD model. The

following account presents some modifications to the TD

model, as well as alternative models.

Fig. 2 Dopamine neurons report a reward prediction error. Peri-event

time histogram of SNc neurons during an appetitive Pavlovian task.

DA neurons show increased activations to unpredicted rewards

(R; Top) and to learned conditioned stimuli predicting rewards

(CS; middle). Once the stimulus-reward associations is learned,

reward delivery no longer elicits an increase in the activity of DA

neurons as it is fully expected (middle).When an expected reward is

omitted, the activity of DA neurons drops at the moment where the

reward should have been delivered (bottom). Reproduced with

permission from Schultz et al. (1997)
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Incorporation of timing variability to the TD model

Rewards are not always delivered immediately after an

action is taken, but are often delayed. The TD model typi-

cally does not account for such delays, thus new models

have been developed to incorporate larger or variable delays

between actions and rewards. One such model was designed

to account for the change in activity of a VTA neuron

during a delayed reward task (Montague et al. 1996). This

model is referred to as the ‘tapped delay line’ or ‘complete

serial compound’ model because it creates a different sen-

sory stimulus representation for each time step following

stimulus onset whether or not a reward has been delivered.

This strategy gives flexibility in reward delivery times and

also allows for the updating of the input weights at each

time step. This model accounted for the time difference

between cue and reward delivery by explicitly representing

cortical inputs and reward outcomes at each time step. The

modification of the synaptic weights was achieved using a

classical Hebbian learning rule that accounted for the cor-

relation between presynaptic stimulus-related activity and

the reward-dependent prediction error.

Daw and colleagues further extended the TD model to

incorporate variability in reward timing, and to allow for a

greater range of state representations, by using semi-

Markovian dynamics and a Partially Observable Markov

Decision Process (POMDP; Daw et al. 2006). In a semi-

Markov process, state transitions occur probabilistically and

the probability of transition depends on the current state and

the amount of time spent in that state (referred to as ‘dwell

time’). This modification using semi-Markov dynamics

added information about timing into the TD model. This

model was further extended to allow for partial observability

(e.g., when a reward was omitted). POMDP removes the one-

to-one relationship between states and observations. Instead,

it generates a probability distribution of states computed on

the basis of estimates of the presence or absence of rewards.

This modification in the model allowed the state represen-

tation, or state value to better reflect the expectations of the

agent.

Finally, another way of representing variability in

stimulus-reward intervals is based on the multiple model-

based RL (MMRL) framework of Doya et al. (Fig. 3;

Bertin et al. 2007; and for other application of the MMRL

framework Doya et al. 2002; Samejima et al. 2003).

Briefly, the MMRL model can be described as parallel

modules, each containing a value estimator and a reward

predictor. The value estimator module computes a value

Fig. 3 Multiple Model Reinforcement Learning (MMRL) model.

The activity of DA neurons is given by the global TD error d(t). Each

module is composed of a value estimator and a reward predictor. The

value estimator outputs a reward prediction (presence or absence) at

each time step. The reward predictor gives a vector of amounts of

predicted reward at each time step following a conditioned stimulus.

The prior responsibility predictor gates the reward predictor output

based on prior knowledge about the module it is in. The reward

predictor output is used to compute the new responsibility signal ki

and gates the update of the reward predictor and value estimator, as

well as the TD error for each module. At last, the TD error updates the

weight vector of each value estimator. Reproduced with permission

from Bertin et al. (2007)
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function (based on the TD algorithm) and outputs the

reward prediction. The reward predictor module generates

a prediction of the amount of reward for each state, based

on the amount of rewards received in the previous state.

This module then generates a ‘responsibility’ signal which

will gate the reward prediction, hence the TD error, for

each module. The responsibility signal also serves to

update the value estimator and reward predictor of the next

module. Because this model is updated at every time step,

it represents rewards delivered at different time intervals,

similar to the tapped delay line model of Montague et al.

(1996) mentioned above. The MMRL model also allows

earlier rewards to weigh more than ones received later.

Together, these models explain how DA neurons may be

dynamically representing prediction errors. However, DA

neurons provide more information than a simple global

prediction error signal. Indeed, the activity of VTA dopa-

minergic neurons was recently shown to predict the ‘best

reward option’, in terms of size, delay and probability of

delivery (reviewed in Hikosaka et al. 2008; Roesch et al.

2007). The activity of some DA neurons in monkey SNc

was also known to reflect the choice of the future motor

response (Morris et al. 2006). In addition, the activity of a

population of DA neurons in the monkey SNc was shown

to increase in response to stimuli predicting punishments

(Matsumoto and Hikosaka 2009). Current computational

models do not typically account for these data.

Dopamine is known to be released at more prolonged

timescales than glutamate or GABA (seconds to minutes;

Abercrombie et al. 1989; Arbuthnott and Wickens 2007;

Louilot et al. 1986; Schultz 2002; Young et al. 1992). For

this reason, it is possible that the activity of DA neurons

does not reflect accurately its pattern of release at target

structures or the timescale of its postsynaptic effects (but

see Lapish et al. 2007). The following section reviews

some experimental findings and models of DA release.

Post-synaptic level: models of the local control

of the effects of dopamine on target brain areas

As presented above, it is now well established that the

activity of the DA cells of the VTA/SNc correlates with

prediction error. How is this phasic change in firing activity

translated into DA release at target structures? Experi-

mental data has shown that a single-pulse stimulation

applied to the VTA or the median forebrain bundle leads to

a DA release lasting a few seconds (Kilpatrick et al. 2000;

Fields et al. 2007; Phillips et al. 2003; Robinson et al.

2002; Roitman et al. 2004; Yavich and MacDonald 2000).

The probability of release of DA is however lower than that

of glutamate and is varies greatly among DA synapses

(Daniel et al. 2009). Furthermore, while the phasic increase

in DA release is commonly referred to in the literature,

evidences for tonic changes in DA concentrations (e.g.

long lasting, timescales of seconds to minutes) have also

been reported in vivo, in the basal ganglia and in prefrontal

cortices (PFC; Bergstrom and Garris 2003; Floresco et al.

2003; Goto and Grace 2005; Grace 1991).

Model of dopamine release

To better understand the kinetics of DA delivery in the

basal ganglia in response to stimulating pulses applied to

the VTA/SNc, Montague et al. (2004b) created the ‘‘kick

and relax’’ model. The authors used the Michaelis–Menten

first order differential equation which is often used in

biochemistry to describe enzymatic reactions. In this

framework, the change in DA concentration was calculated

as the difference between the rate of its release and that of

its uptake. The authors adapted the equation to match their

experimental finding which showed that stimulation trains

applied to the VTA/SNc with short inter-burst intervals

(2 s) induced a greater DA release in the caudate/putamen

than with longer inter-burst intervals (5 s) that lead to a

‘depression’ in DA release. The model parameters included

a ‘kick’ factor to facilitate and a ‘relax’ factor to depress

the influence of input spikes so that the associated time

constant of DA concentration decayed over time. The

model suggested that dopamine release was in part a

dynamical process controlled locally within the target

structure.

Models of the effects of dopamine release

Part of understanding how incentive learning is processed

in the brain involves knowing and understanding how DA

neurons modulate the activity of their postsynaptic targets.

The main projection of DA neurons is to the striatum

(Lindvall and Bjorklund 1978). Early models proposed

basic mechanisms by which catecholamines could change

the input/output characteristics of neurons (Servan-Schre-

iber et al. 1990). This early work focused on general

intrinsic membrane characteristics. More recent work on

the specific actions of D1 and D2 dopamine receptors has

refined the understanding of the role of dopamine on

postsynaptic targets (Surmeier et al. 2007). While D1

activation is in general excitatory, it depends on the state of

depolarization of the postsynaptic membrane potential;

hyperpolarized neurons will respond to D1 activation by

lowering their firing rate, while depolarized neurons will do

the opposite. Thus, striatal neurons already activated by

convergent excitatory glutamatergic inputs from the cortex

will tend to be facilitated by D1 stimulation, whereas those

firing spuriously may be inhibited. On the other hand, D2

activation is in general inhibitory.
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Models illustrating the possible functional roles for the

differential activation of D1 and D2 receptors have been

recently proposed. Frank and colleagues built on the work

of Suri, Wickens and others, and investigated the effects of

dopaminergic modulation of striatonigral and striatopalli-

dal cells in the classical ‘‘direct’’ and ‘‘indirect’’ pathways

of the basal ganglia (Frank 2005; for review and updates

see Cohen and Frank 2009). There, dopamine increases

the signal to noise ratio in striatonigral ‘‘Go’’ neurons

expressing D1 receptors, modeled by an increase in the

gain of the activation function and an increase in firing

threshold. Conversely, dopamine inhibits the activity in

striatopallidal ‘‘NoGo’’ neurons expressing D2 receptors.

Together these effects determine action selection, whereby

Go activity facilitates and NoGo activity suppresses, the

selection of a cortical action via modulation of basal gan-

glia output nuclei and ultimately, thalamocortical activity

(Fig. 4).

Together these experimental and theoretical findings

indicate that the short term computational influences of DA

depends in part on the firing rate of DA cells, the local

dynamics of DA release and the exact nature of the acti-

vated postsynaptic receptors. The effect of DA on its target

structures is however more complex than previously

thought. For example, it involves intricate interactions with

glutamate, which is also released by VTA/SNc cells, as

well as from cortical afferents onto striatal neurons

(reviewed by Cepeda and Levine 1998; Kötter and Wic-

kens 1995; Nicola et al. 2000; Reynolds and Wickens

2002). In the NAc, DA modulates glutamate co-transmis-

sion in a frequency-dependent manner, whereby only high-

frequency stimulation of VTA neurons leads to DA facil-

itation of glutamate transmission (Chuhma et al. 2009). DA

cells of the VTA are also known to co-release GABA (Gall

et al. 1987; Maher and Westbrook 2008; Schimchowitsch

et al. 1991). The network activity in the target brain areas

also plays an important role in controlling local activity,

and therefore in controlling the influence of DA on its

postsynaptic cells. For instance, it was shown that dopa-

mine could have both suppressing and enhancing effects

depending on its concentration and on the ‘UP’ or

‘DOWN’ state of the target networks in vitro and in vivo

(Kroener et al. 2009; Vijayraghavan et al. 2007). The

intricacies of DA effects on transmission are so complex

that it will fuel many more experimental and computational

studies. Beyond its effects on synaptic transmission, DA

can also have long term effects through its influence on

synaptic plasticity at target structures including the basal

ganglia, prefrontal cortex and amygdala.

Synaptic plasticity level: models of the role of dopamine

in changing long-term synaptic strength

Behaviorally, DA is required in the early stages of Pav-

lovian conditioning paradigms, such as approach behaviors

to food rewards or instrumental conditioning in general

(reviewed in Wickens et al. 2007). This DA-dependency is

due in part to a DA modulation of the plastic synaptic

events that underlie reinforcement and associative learning.

Synaptic plasticity has indeed been shown to occur at target

structures of the VTA, including the NAc (Kombian and

Malenka 1994; Li and Kauer 2004; Pennartz et al. 1993;

Robbe et al. 2002; Taverna and Pennartz 2003; Thomas

et al. 2001), PFC (Otani et al. 2003) and amygdala (Bauer

and LeDoux 2004; Bauer et al. 2002; Fourcaudot et al.

2009; Huang and Kandel 1998, 2007; Humeau et al. 2003;

Samson and Pare 2005). DA was shown to modulate

plasticity in the striatum (Calabresi et al. 2007; Centonze

et al. 2003; Kerr and Wickens 2001; Pawlak and Kerr

2008; Reynolds et al. 2001), the amygdala (Bissière et al.

2003), PFC (Huang et al. 2007; Kolomiets et al. 2009) and

hippocampus (Frey et al. 1989, 1990, 1991; Otmakhova

and Lisman 1996, 1998; Gurden et al. 1999) but not in the

NAc. Behaviorally, it was also shown that pharmacological

manipulations of DA levels in the brain shortly after per-

formance can alter memory consolidation or reconsolida-

tion (Dalley et al. 2005; Fenu and Di Chiara 2003;

Hernandez et al. 2005; McGaugh 2002; Robertson and

Cohen 2006).

D1

STRIATUM

STN

GPe

THALAMUS

SNC/VTA SNr/GPi

NEOCORTEX

Go NoGo
D1 D2

Fig. 4 Illustration of the striato-cortical loop. In this brain circuit,

DA projections from the VTA/SNc target the striatal neurons and

activate D1 and D2 receptors located on neurons of the direct (Go)

and indirect (NoGo) pathways of the basal ganglia. The direct

pathway refers to the projection of striatal neurons to the internal

segment of the globus pallidus (GPi), which is the output of the basal

ganglia. The indirect pathway refers to the projection of striatal

neurons to the GPi, via the external segment of the globus pallidus

(GPe). D1 receptor activation in the striatum leads to activation of the

Go cells of the direct pathway and the consequent initiation of

movements, whereas D2 receptor activation inhibits the NoGo cells of

the striatum leading to the suppression of movements. The GPi and

the substantia nigra pars reticulata (SNr) target the thalamic nuclei

projection to the frontal cortex Adapted from Frank et al. 2005
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Various reward-modulated plasticity models have been

proposed (Florian 2007; Izhikevich 2007; Roberts et al.

2008; Thivierge et al. 2007). Most of these models use a

form of synaptic modification known as spike timing

dependent plasticity (STDP), which is based on the tem-

poral relationship between pre-and postsynaptic activation

(see Fig. 5b; Bi and Poo 1998; Markram et al. 1997).

According to the STDP model, if a presynaptic spike

occurs before a postsynaptic spike, long term potentiation

(LTP) will occur, whereas the reverse order of pre- and

postsynaptic spikes will induce long term depression

(LTD). For plasticity to occur, the pre- and postsynaptic

activation must happen within a short temporal window

(less than 40 ms). The magnitude of the change in synaptic

strengths depends on the time difference between pre- and

postsynaptic activation and the direction of change depends

on the order between pre-and postsynaptic activation.

In most reward-modulated STDP models, an RL com-

ponent updates the synaptic weights based on a reward

signal, eligibility trace and learning curve (Florian 2007;

Izhikevich 2007; Roberts et al. 2008; Thivierge et al.

2007). A decaying eligibility trace determines which syn-

apses are potentiated by DA and by how much depending

on the size of the time interval between the stimulus and

the reward (in this case, the time interval between the pre-

and postsynaptic activations). The conceptual rationale is

that in the early phases of learning, reward delivery leads to

an increase activity in the VTA/SNc, thereby inducing DA

release at target areas. DA will however only affect plas-

ticity of the synapses that were active during the presen-

tation of the predictive cue. This is because the eligibility

trace has specifically ‘tagged’ the active synapses that

underwent STDP, thereby solving the ‘credit assignment’

problem. In partial support for this model, Otmakhova and

Lisman (1998) have shown that DA application after high-

frequency stimulation leading to LTP can prevent the de-

potentiation of the synapses. Thus DA does not further

potentiate synaptic plasticity as modeled, but prevents de-

potentiation leading to a similar overall result of having

specific potentiated synapses. The applicability of the

reward-modulated model was further tested with computer

simulations using networks of leaky integrate-and-fire

(LIF) neurons by Legenstein et al. (2008). The simulations

showed the ability of this type of rule to predict spike times

(rather than stimulus delivery times). As an alternative to

STDP, Xie and Seung (2004) proposed a different learning

rule based on the irregular nature of neural spiking and a

reward-dependent eligibility trace. Other RL models

demonstrated how neural networks could be trained to fire

toward an optimum (Baras and Meir 2007; Potjans et al.

2009).

The effect of DA on corticostriatal synaptic plasticity is

complex (see Reynolds and Wickens 2002 for a review).

For instance, the amount of DA released at the time of

corticostrial activation influences the direction of the

plasticity, low levels inducing LTD and higher levels LTP

(see Fig. 6). A recent computational study represented the

reward value by the change in extracellular concentration

of DA relative to baseline levels (Thivierge et al. 2007). In

this study, the extracellular DA dynamics due to DA dif-

fusion as well as DA degradation were calculated. The

former was calculated based on the Michaelis–Menten

equation and the latter was based on diffusion equations,

similar to the ‘kick and relax’ model of Montague et al.

(2004b) presented in the previous section. The change in

DA concentration was then introduced multiplicatively into

the STDP learning rule to simulate experimental data. The

change in synaptic weight was expressed as

Dw ¼ F Dtð Þ D tð Þ½ �total�b
� �

with F representing the STDP rule, D the instantaneous DA

concentration and b the baseline DA concentration. This

multiplication of the STDP with the change in DA con-

centration allowed for the modeling of the biphasic effect

Fig. 5 A reward-modulated

STDP model. a Schematic of

DA modulation of

corticostriatal synaptic

plasticity. b STDP model

illustrating the change in

amplitude of the eligibility trace

c(t), depending on the timing of

pre- and postsynaptic activation

s. c Change in synaptic strength

s(t) following overlapping

STDP-induced eligibility trace

activation and increased DA

levels d(t) caused by reward

delivery. Reproduced with

permission from Izhikevich

(2007)
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of DA on corticostriatal synaptic plasticity (Fig 6,

reviewed in Reynolds and Wickens 2002).

More complex interactions of DA and corticostriatal

activation were also captured in the model of Frank et al.

(2007; Fig. 7). DA bursts during positive prediction errors

increase synaptic connection weights in subpopulations of

Go-D1 cells that are concurrently excited by corticostriatal

glutamatergic input, while also decreasing weights in

NoGo-D2 cells. This enables the network to be more likely

to repeat actions that are associated with positive reward

prediction errors (Frank 2005), and is consistent with

recent studies of synaptic plasticity showing D1-dependent

LTP in striatonigral cells and D2-dependent LTD in stri-

atopallidal cells (Shen et al. 2008). Moreover, in the model,

DA pauses during negative prediction errors releasing

NoGo cells from the tonic inhibition of DA onto high-

affinity D2 receptors. The resulting transient activity

increase in those NoGo cells that are concurrently excited

by corticostriatal glutamatergic input is associated with

activity-dependent synaptic strengthening (LTP), such that

the system is more likely to suppress the maladaptive

action in future encounters with the same sensory event.

This effect is also consistent with studies in which a lack of

D2 receptor stimulation (a ‘‘pause’’ in DA release) was

associated with LTP in striatopallidal cells (Shen et al.

2008). The model has been used to simulate the effects of

Parkinson’s disease and pharmacological manipulations on

learning and decision making processes in humans, and

predicted that learning from positive and negative out-

comes would be modulated in opposite directions by such

treatments, as confirmed empirically (Frank et al. 2004; for

review see Cohen and Frank 2009). More recently, the

same model has accounted for some of the pharmacologi-

cal effects of D2 receptor antagonists on the acquisition,

extinction and renewal of motivated behavior in rats

(Wiecki et al. 2009). Of course, several biophysical details

are omitted in these models of corticostriatal circuitry. For

example, future modeling work should incorporate STDP

within the context of the basal ganglia circuitry to examine

the role of spike-timing, together with the roles of other

neurochemicals, such as adenosine, on corticostriatal

plasticity (Shen et al. 2008).

The influence of dopamine on synaptic plasticity

depends on numerous factors including the targeted cell

type, the specific receptors activated and the brain region

under consideration (Bissière et al. 2003; Calabresi et al.

2007; Otani et al. 2003; Shen et al. 2008; Wickens 2009;

Yao et al. 2008). Reinforcement learning results from the

dynamical interaction between numerous brain networks

mediating the acquisition of conditioning tasks and action

selection. We next present RL models at the system level.

Behavioral level: system level models of dopamine

modulation of action selection

In reinforcement, numerous brain regions contribute to the

association of cues with rewards, the learning of the actions

that lead to these rewards and the adaptation to changes in

reward values or in task contingencies (Dayan and Balleine

2002). The difficulty in associating reward processing with

neurotransmitter systems is that typically these systems

have very diffuse and often reciprocal projections to many

if not all parts of the brain, so that a general understanding

of the neural substrate of reward processing amounts to

understanding the entire brain. Indeed, besides the VTA/

SNc system, a number of brain regions have been shown to

also respond to rewards or reward predictive cues,

including the amygdala (Hatfield et al. 1996; Holland and

Gallagher 1999) and orbitofrontal cortex (Furuyashiki and

Gallagher 2007; Furuyashiki et al. 2008; Gallagher et al.

1999; O’Doherty et al. 2002, 2003; Schoenbaum et al.

1999; Tremblay and Schultz 2000a, b). A few behavioral

models of incentive leaning are presented here. These

models are based on either Q-learning or on the actor-critic

algorithms, both representing extensions of the TD models

that incorporate action selection. One interesting feature of

these models is that they all require the division of the task

into several modules in order to account for the various

behavioral characteristics observed experimentally. This

further emphasizes the need for parallel networks under-

lying reinforcement.

Q-learning algorithm and the actor-critic model

The TD model relies on differences between expected and

received rewards of temporally separated events or states.

Fig. 6 The modulation corticostriatal plasticity by DA depends on its

concentration. Low DA concentration during cortical high-frequency

stimulation (HFS) leads to LTD, whereas higher DA concentration

during HFS leads to LTP. Reproduced with permission from

Reynolds and Wickens (2002)
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In and of itself, this model is insufficient to explain how new

behaviors emerge as a result of conditioning, or how goal-

directed actions are performed. To that aim, extensions of

the TD model have been designed to incorporate action

selection. Two frequently used theoretical frameworks are

Q-learning and the actor-critic algorithms. Both paradigms

use the TD error to update the state value. Q-learning is

based on the TD algorithm, and optimizes the long term

value of performing a particular action in a given state by

generating and updating a state-action value function Q

(Sutton and Barto 1998; Watkins and Dayan 1992). This

model assigns a Q-value for each action-state pair (rather

than simply for each state as in standard TD). For an action

at performed at given state st, this value can be expressed as

Q st; atð Þ ¼ Q st; atð Þ þ a d tð Þð Þ

where the parameter a is the learning rate as in the TD rule.

The prediction error d(t) is expressed as

d tð Þ ¼ Rþ c maxi stþ1; aið Þ � Q st; atð Þ

and can be interpreted as the difference between the pre-

vious estimate Q(st,at) and the new estimate after taking

action at. The new estimate incorporates any experienced

reward R together with the expected future reward (dis-

counted by c), assuming that the action with greatest Q

value is taken in the subsequent state st?1. The value of the

state-action pair therefore increases only if d(t) is greater

than 0, i.e. if the new estimate is greater than the previous

estimate (due to an unexpected reward R or a higher

expectation of future reward by having achieved state st?1).

If so, the value of the pair will increase and more accu-

rately reflect the expected future reward for taking action a,

such that this action will be more likely to be selected again

the next time the agent will be in this particular state st.

The probability of selecting a given action a in state s is

typically a sigmoidal function comparing the Q values of

that action to all others:

P aið Þ ¼ exp bQaið Þ/
X

j

exp bQaj

� �
;

where b is the slope of the sigmoid determining the degree

of exploration vs. exploitation; i.e., high values are asso-

ciated with deterministic selection of the action with the

highest Q value, whereas lower b values allow for proba-

bilistic selection of lower Q values.

With proper parameter tuning, this Q learning model has

the advantage of allowing for the exploration of potentially

less beneficial options (i.e. sometimes selecting the actions

with lower Q values in st?1) without impacting the Q-value

of the prior state-action pair when the outcomes of these

exploratory actions are not fruitful. An extension to the

Q-learning algorithm was recently described by Hiraoka

and colleagues (2009).

The actor-critic algorithm, on the other hand, optimizes

the policy directly by increasing the probability that an

action is taken when a reward is experienced without

computing the values of actions for a given state (Barto

1995; Joel et al. 2002; Konda and Borkar 1999; Takahashi

et al. 2008). The actor-critic model has been successfully

used to understand how coordinated movements arise from

reinforced behaviors (Fellous and Suri 2003; Suri et al.

2001).

How do neurons integrate information about rewards

and sensory stimuli to produce coordinated outputs to the

thalamus and induce movement? In this formulation, the

‘critic’ implements a form of TD learning related to

dopamine neuron activity, while the ‘actor’ implements the

learning occurring during sensory-motor associations (See

Fig. 1). Otherwise stated, the critic estimates the state

values based on the TD learning rule (without computing

the value of particular actions) and the actor updates the

policy using the reward prediction error d(t) resulting from

achieving a particular state. Accordingly, the policy

parameter is updated as follows

p st; atð Þ ¼ p st; atð Þ þ ad tð Þ:

where the parameter a is the learning rate, as in the TD rule

and p is the policy.

The algorithms above, in particular Q learning, have

been applied to understand reinforcement-based decision

making in humans (e.g., O’Doherty et al. 2004; Frank et al.

2007; Voon et al. 2010). In two recent studies, human

subjects learned to select among symbols presented on a

computer screen, where the selection of some symbols

were associated with a greater probability of reward (points

or financial gains), and others were associated with a

greater probability of negative outcome (losses) (Frank

et al. 2007; Voon et al. 2010). A modified Q-learning

algorithm was used to model the probability that an indi-

vidual would select a particular symbol in a given trial as a

function of reinforcement history. This abstract formula-

tion was further related to the posited mechanisms

embedded in the neural model of the basal ganglia Go/

NoGo dopamine system described earlier. Thus, rather than

having a single learning rate to adapt Q-values for action as

a function of reward prediction error, this model utilized

separate learning rates for positive and negative prediction

errors, corresponding to striatal D1 and D2 receptor

mechanisms respectively. The authors found that the best-

fitting learning rate parameters which provided the best

objective fit to each participant’s choices (using maximum

likelihood), were predicted by variations in genetic factors

affecting striatal D1 and D2 receptor mechanisms (Frank

et al. 2007). Others have used a similar approach to show

that these learning rate parameters are differentially

modulated by dopaminergic medications administered to
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patients with Parkinson’s (Voon et al. 2010). Finally,

another recent study replicated the striatal D1/D2 genetic

variation effects on positive and negative learning rates in

the context of a task that required participants to adjust

response times to maximize rewards, which had also been

shown to be sensitive to dopaminergic manipulation

(Moustafa et al. 2008; Frank et al. 2009). Moreover, in

addition to learning, this model also included a term to

account for exploration, which was predicted to occur

when participants were particularly uncertain about the

reward statistics due to insufficient sampling. It was found

that individual differences in this uncertainty-driven

exploration were strongly affected by a third genetic vari-

ation known to regulate prefrontal cortical, rather than

striatal, dopamine. Although no mechanistic model has

been proposed to account for this latter effect, this result

highlights again that dopamine may be involved in multiple

aspects of reinforcement learning by acting via different

receptors, time courses, and brain areas.

Once behavioral responses are learned, it can be chal-

lenging to modify behaviors to changes in stimulus-reward

contingencies. Learning that a cue no longer predicts the

delivery of a reward involves learning to refrain making a

particular action because it no longer has a purpose. This

form of learning is called extinction. Extinction is not the

result of unlearning or forgetting (Bouton 2004); rather, it

is a form of learning that involves different neural networks

from those recruited during the original learning of the

stimulus-outcome associations. Extinction is associated

with spontaneous recovery when placed back in the origi-

nal context and the action renewal rate is faster than the

rate of the initial acquisition. The TD model would rep-

resent this situation as a decrease in the prediction error,

thereby indicating that no reward is expected from pre-

sentation of the stimulus. Since the TD model in itself

cannot incorporate all the particularities of extinction

learning, Redish and colleagues (2007) built a model of

extinction that can also explain spontaneous recovery and

renewal rate. This model is divided in two components; a

TD component acquired the state value and a situation-

categorization component (state-classification) differenti-

ated the associative phase from the extinction phase. The

TD component was implemented using the Q-learning

algorithm to measure the value of taking an action in a

particular state (Sutton and Barto 1998). During extinction,

since rewards are omitted, the prediction error decreased

and the probability of changing state increased. The state

classification component allowed for the alternation

between parallel state spaces. A threshold determined

whether a new state should be created. A low tonic value-

prediction error term was represented by an exponentially

decaying running average of recent negative prediction-

error signals. Low values produced a change in state

representation, for the ‘extinction state’. A subsequent

positive value-prediction error term modeled renewal

(spontaneous recovery when the animal is returned to the

first context). While this study did not explicitly model

neural mechanisms, but behavioral data, the requirement of

having parallel state representations illustrated the way

parallel neural networks might be working together to form

different stimulus representations depending on the situa-

tion. Other related examples of extinction and renewal

have been modeled in basal ganglia networks to account

for the effects of dopaminergic pharmacological agents on

the development and extinction of motor behaviors in rats

(Wiecki et al. 2009). Finally, fear conditioning is another

well documented conditioning paradigm amenable to

extinction studies (reviewed in Ehrlich et al. 2009; Quirk

and Mueller 2007). The computational role of dopamine in

this paradigm is however still unclear.

The schedule of reinforcement during training is critical

for maintaining goal-directed response. With extended

training, responses become habitual, thereby insensitive to

changes in the tasks contingencies or reward values. This

change with training from goal-directed to habitual

behavior is correlated with changes in the brain networks

involved in these behaviors. The dorsolateral striatum is

involved in habitual responding while the prefrontal cortex

mediates goal-directed behavior (Yin et al. 2008). Using

outcome uncertainty as the distinguishing factor mediating

goal-directed versus habitual behaviors, Daw et al. created

two models, one for each type of behavior (Daw et al.

2005). These models, based on Q-learning algorithms,

were used to represent each system; the dorsolateral stria-

tum network was represented by a model-free ‘cache’

(slow learning integrative TD-like) system, and the pre-

frontal network by a model-based ‘tree-search’ system. The

uncertainty was introduced in the model-free system using

Bayesian probability distributions in the Q-value estimates.

When a reward is devalued through satiation, only the

Q-value of the state-action pair associated with the reward

state is reduced in the model-free system, such that

extended training would be required to adapt all Q values

leading up to this state. In contrast, in the model-based ‘tree

search’ system, a change in the reward function immedi-

ately impacted that of all other states. This allowed for the

‘tree-search’ model to remain goal-directed and adapt to

changes in the reward value, but not the ‘cache’ system

which continued to respond despite the devaluation of the

reinforcer, thereby simulating habit responding.

Most decision making experiments rely on learning to

perform visuomotor tasks a type of cross-modal learning.

In a system level model, a network representing the dor-

solateral prefrontal cortex and the anterior basal ganglia

was responsible for receiving visual inputs, and a second

network representing the supplementary motor area and the
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posterior basal ganglia was responsible for generating a

motor output (Nakahara et al. 2001). Both networks were

modeled differently with the visual network containing

working memory capability allowing for rapid initial

learning of the task and for task reversal. The motor net-

work had a slower learning rate, but once the task was

learned, it allowed for faster and more accurate motor

actions than the visual network. Parallel loops were mod-

eled for each network and a coordinator module was added

to adjust the respective contribution of each network. The

general model followed the actor-critic architecture men-

tioned above and in Fig. 1, in which the critic generated

prediction errors by changing the weight matrices of the

visual and motor network (both are considered actors in

this model). During learning, the weight matrices of each

network changed so as to maximize the sum of future

rewards. Simulations confirmed that these parallel net-

works fits the data more accurately in terms of learning

rates and adaptation to changes in the task sequence than

either of the two networks working independently.

The psychological theories of reinforcement highlight

the fact that this form of learning is intricate but amenable

to modeling. The acquisition and performance of goal-

directed behaviors are known to be sensitive to the rein-

forcement schedule, stimulus-reward contingencies, con-

text and reward values. Due to their complexity, and as

presented here, computational models need the integration

of parallel computational structures to explain how these

behaviors adapt to variable experimental and environ-

mental conditions.

Conclusions

Reinforcement learning is at the basis of many forms of

adaptation of the organism to its environment. More than

simply a form of stimulus-outcome association, RL is

intrinsically designed to optimize. Optimization can be that

of an amount of rewards, a speed of learning, or that of

robustness to perturbing events. This feature of the RL

paradigm is puzzling because RL relies on relatively

information-poor feedback signals. We reviewed some of

the main models of RL and outlined how they can be

understood and implemented by the nervous system at

multiple levels, from synaptic to system. Rare are the

models that attempt multi-level integration. It is however in

the integration between these levels that lay the biological

success of RL. Finally, we note that this review did not

cover the many artificial intelligence approaches that have

attempted to address reinforcement at more cognitive and

abstract levels. Future work should be done to bridge and

contrast the artificial intelligence and computational neu-

roscience approaches.
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